Section 12.1 Reaction Rates

1. The decomposition of dinitrogen pentoxide is described by the reaction below: 2 $N_2 0_5(g) \longrightarrow 4 N0_2(g) + 0_2(g)$

If the rate of appearance of 0_2 is equal to 2.40 mol/min, what is the rate of disappearance of N_2O_2 ?

- a) 0.600 mol/min
- b) 1.20 mol/min
- c) 4.80 mol/min
- d) 9.60 mol/min

Section 12.2 Rate Laws and Reaction Order

- 2. For the general rate law, Rate = $k[A][B]^{\frac{1}{2}}$, what will happen to the rate of reaction if the concentration of A is tripled?
 - a) The rate will be halved.
 - b) The rate will be doubled.
 - c) The rate will be tripled.
 - d) The rate will remain the same.

Section 12.3 Experimental Determination of a Rate Law

3. The following set of data was obtained by the method of initial rates for the reaction:

2 HgCl $_2$ (aq) + C $_2$ O $_4$ 2 - (aq) \longrightarrow 2 Cl - (aq) + 2 CO $_2$ (g) + Hg $_2$ Cl $_2$ (s) What is the rate law for the reaction?

[HgCl ₂], M	[C ₂ O ₄ ²⁻], M	Rate, M/s
0. 10	0. 10	1.3 x 10-7
0. 10	0. 20	5. 2 x 10-7
0. 20	0. 20	1.0 x 10-

- a) Rate = $k[HgCl_{2}][C_{2}O_{4}^{2}]^{-2}$
- b) Rate = $k[HgCl_2][C_2O_4^{2-}]^{-1}$
- c) Rate = $k[HgCl_2]^2[C_2O_4^2]$
- d) Rate = $k[HgCl_{2}][C_{2}\bar{0}_{4}^{2}]^{2}$

4. The following set of data was obtained by the method of initial rates for the reaction:

2 $\operatorname{HgCl}_2(\operatorname{aq}) + \operatorname{C}_2\operatorname{O}_4^2$ (aq) \longrightarrow 2 $\operatorname{Cl}^-(\operatorname{aq}) + 2 \operatorname{CO}_2(g) + \operatorname{Hg}_2\operatorname{Cl}_2(s)$ What is the value of the rate constant, k?

[HgCl ₂], M	[C ₂ O ₄ ²⁻], M	Rate, M/s
0. 10	0. 10	1.3 x 10-7
0. 10	0. 20	5.2 x 10 ⁻⁷
0. 20	0. 20	1.0 x 10-

- a) $1.4 \times 10^{-8} \text{ M/s}$
- b) 1.3 x 10 M/s
- c) $1.4 \times 10^{-5} \text{ M/s}$
- d) $1.3 \times 10^{-4} \text{ M/s}$

Section 12.4 Integrated Rate Law for a First-Order Reaction

- 5. For a first-order reaction, it takes 48 minutes for a reactant to decrease to 25% of its initial value. What is the rate constant (in inverse seconds) for the reaction?
 - a) $1.92 \times 10^{-5} \text{ s}^{-1}$
 - b) 2.41 x 10⁻¹ s⁻¹
 - c) $4.81 \times 10^{-4} \text{ s}^{-1}$
 - d) 2.90 x 10⁻¹ s⁻¹
- 6. The isomerization reaction, CH₃NC \longrightarrow CH₃CN, is first order and the rate constant is 0.46 s⁻¹ at 600 K. What is the concentration of CH₃NC after 0.20 minutes of reaction if the initial concentration is 0.10 M?
 - a) $9.1 \times 10^{-4} \text{ M}$
 - b) 4.0 x 10 M
 - c) $9.1 \times 10^{-2} M$
 - d) 4.0 x 10 M

Section 12.5 Half-Life of a First-Order Reaction

- 7. The rate constant, k, for a first-order reaction is equal to 4.2 x 10^{-4} s⁻¹. What is the half-life of the reaction?
 - a) 2.9 x 10 s
 - b) 1.5 s
 - c) 7.2 x 10 s
 - d) 1.7 x 10 s

Section 12.6 Second-Order Reactions

- 8. The reaction: 2 HI \longrightarrow H₂ + I₂, is second order. At 800 K it takes 142 seconds for the initial concentration of HI to decrease from 6.75 x 10^{-2} M to 3.50 x 10^{-2} M. What is the rate constant for the reaction at that temperature?
 - a) $2.29 \times 10^{-4} M^{-1} s^{-1}$
 - b) $9.69 \times 10^{-1} M^{-1} s^{-1}$
 - c) 10.3 M⁻¹ s⁻¹
 - d) $4.37 \times 103 \text{ M}^{-1} \text{ s}^{-1}$

Section 12.7 Reaction Mechanisms

9. A mechanism for a naturally occurring reaction that destroys ozone is:

Step 1: $0_3(g) + H0(g) \longrightarrow H0_2(g) + 0_2(g)$ Step 2: $H0_2(g) + 0(g) \longrightarrow H0(g) + 0_2(g)$

Which species is an intermediate?

- a) H0
- b) H0
- c) 0
- d) 0

Section 12.9 Reactions Rates and Temperature: The Arrhenius Equation

- 10. What is the activation energy for the formation of ozone?
 - a) 14 kJ
 - b) 392 kJ
 - c) 406 kJ
 - d) none of these

Reaction Progress

1.	c)				
9	c)	Chapter:	12	QUESTI ON:	9
		Chapter:	12	QUESTI ON:	12
3.	d)	Chapter:	12	QUESTI ON:	24
4.	d)	Chantan	1.0	OUECTI ON.	25
5.	c)	Chapter:	12	QUESTI ON:	25
6.	b)	Chapter:	12	QUESTI ON:	32
7	d)	Chapter:	12	QUESTI ON:	35
		Chapter:	12	QUESTI ON:	38
8.	b)	Chapter:	12	QUESTI ON:	48
9.	b)	Chantan	1.0	OUECTI ON.	E 1
10.	c)	Chapter:	12	QUESTI ON:	54
		Chapter:	12	QUESTI ON:	67