MULTIPLE CHOICE

Section 12.1 Reaction Rates

1. The decomposition of dinitrogen pentoxide is described by the reaction below:
$2 \mathrm{NaOs}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
If the rate of appearance of 02 is equal to $2.40 \mathrm{~mol} / \mathrm{min}$, what is the rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{\mathbf{5}}$?
a) $0.600 \mathrm{~mol} / \mathrm{min}$
b) $1.20 \mathrm{~mol} / \mathrm{min}$
c) $4.80 \mathrm{~mol} / \mathrm{min}$
d) $9.60 \mathrm{~mol} / \mathrm{min}$

Section 12.2 Rate Laws and Reaction Order

2. For the general rate law, Rate $=k[A][B]^{2}$, what will happen to the rate of reaction
if the concentration of A is tripled?
a) The rate will be halved.
b) The rate will be doubled.
c) The rate will be tripled.
d) The rate will remain the same.

Section 12.3 Experimental Determination of a Rate Law

3. The following set of data was obtained by the method of initial rates for the reaction:
$2 \mathrm{HgCl}_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4} \mathbf{2 - (a q)} \longrightarrow 2 \mathrm{Cl}-(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Hg}_{2} \mathrm{Cl} \mathrm{I}_{2}(\mathrm{~s})$ What is the rate law for the reaction?

[HgCl_{2}], M	$\left[C_{2} 0_{4}^{2-}\right], \mathrm{M}$	Rate, M/s
0.10	0.10	$1.3 \times 10-7$
0.10	0.20	5. $2 \times 10-7$
0.20	0.20	1.0 $\times 10-\mathrm{F}$

a) Rate $=k\left[\mathrm{HgCl}_{2}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]^{-2}$
b) Rate $=k\left[\mathrm{HgCl}_{2}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}-1-1\right.$
c) Rate $=k\left[\mathrm{HgCl}_{2}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]$
d) Rate $=k\left[\mathrm{HgCl}_{2}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{~F}^{2-}\right]^{2}$
4. The following set of data was obtained by the method of initial rates for the reaction:
$2 \mathrm{HgCl}_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4} \mathbf{z -}(\mathrm{aq}) \longrightarrow 2 \mathrm{Cl}-(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Hg}_{2} \mathrm{Cl} 2(\mathrm{~s})$
What is the value of the rate constant, k?

[HgCl_{2}], M	$\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right], \mathrm{M}$	Rate, M/s
0.10	0.10	1. $3 \times 10-7$
0.10	0.20	5. $2 \times 10-7$
0.20	0. 20	1.0 $\times 10^{-5}$

a) $1.4 \times 10^{-3} \mathrm{M} / \mathrm{s}$
b) $1.3 \times 10-7 \mathrm{M} / \mathrm{s}$
c) $1.4 \times 10-5 \mathrm{M} / \mathrm{s}$
d) $1.3 \times 10^{-9} \mathrm{M} / \mathrm{s}$

Section 12.4 Integrated Rate Law for a First-Order Reaction

5. For a first-order reaction, it takes 48 minutes for areactant to decrease to 25% of its initial value. What is the rate constant (in inverse seconds) for the reaction?
a) $1.92 \times 10-5 \mathrm{~s}-1$
b) $2.41 \times 10^{-4} \mathrm{~s}^{-1}$
c) $4.81 \times 10-9 \mathrm{~s}=1$
d) $2.90 \times 10-2 \mathrm{~s}-1$
6. The isomerization reaction, $\mathrm{CH}_{3} N \mathrm{C} \longrightarrow \mathrm{CH}_{3} \mathrm{CN}$, is firstorder and the rate constant is $0.46 \mathrm{~s}^{\mathbf{- 1}}$ at 600 K . What is the concentration of CHzN after 0.20 minutes of reaction if the initial concentration is 0.10 M ?
a) $9.1 \times 10-9 \mathrm{M}$
b) $4.0 \times 10^{-9} \mathrm{M}$
c) $9.1 \times 10^{-2} \mathrm{M}$
d) $4.0 \times 10^{-2} \mathrm{M}$

Section 12.5 Half-Life of a First-Order Reaction

 the half-life of the reaction?
a) $2.9 \times 10^{-9} \mathrm{~s}$
b) 1.5 s
c) $7.2 \times 10^{2} \mathrm{~s}$
d) $1.7 \times 103 \mathrm{~s}$

Section 12.6 Second-Order Reactions

8. The reaction: $2 \mathrm{HI} \longrightarrow \mathrm{H}_{2}+1 \mathbf{2}$, is second order. At 800 K it takes 142 seconds for
 What is the rate constant for the reaction at that temperature?
a) $2.29 \times 10^{-9} \mathrm{M}^{-1} \mathrm{~s}^{\mathbf{- 1}}$
b) $9.69 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{\mathbf{- 1}}$
c) $10.3 \mathrm{M}^{\mathbf{- 1}} \mathrm{s}^{\mathbf{- 1}}$
d) $4.37 \times 103 \mathrm{M}^{\mathbf{1}} \mathrm{s}^{\mathbf{- 1}}$

Section 12. 7 Reaction Mechanisms

9. A mechanism for a naturally occurring reaction that destroys ozone is: Step 1: $\mathrm{O}_{3}(\mathrm{~g})+\mathrm{HO}(\mathrm{g}) \longrightarrow \mathrm{HO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ Step 2: $\mathrm{HO}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{HO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
Which species is an intermediate?
a) HO
b) HO_{2}
c) 0
d) O_{3}

Section 12.9 Reactions Rates and Temperature: The Arrheni us equation
10. What is the activation energy for the formation of ozone?
a) 14 kJ
b) 392 kJ
c) 406 kJ
d) none of these

Reaction Progress

1. C)

Chapter: 12 QUESTION: 9
2. C)
Chapter: 12 QUESTION: 12
3. d)
Chapter: 12 QUESTION: 24
4. d)

Chapter: 12 QUESTION: 25
5. C)

Chapter: 12 QUESTION: 32
6. b)

Chapter: 12 QUESTION: 35
7. d)
Chapter: 12 QUESTION: 38
8. b)

Chapter: 12 QUESTION: 48
9. b)
10. C)

Chapter: 12 QUESTION: 54

Chapter: 12 QUESTION: 67

