Name:_

Period:_____

Radioactive Dating

Using regular (non-scientific) numbers, write the half-life of each of the following materials (from your *Handy Dandy Earth Science Reference Tables*):

- 1. Carbon¹⁴
- 2. Potassium⁴⁰
- 3. Uranium²³⁸
- 4. Rubidium⁸⁷

How to calculate age of an item using radioactive isotopes:

- a. Add the amount of parent material with the daughter product- this will equal the total amount of material that you started with.
- b. Find the percentage of parent material compared to the total material (parent ÷ total x 100).
- c. Find the number of half-lives by looking up the percentage on the decay chart below.

0	1	2	3	4	5	6	7	8	9	10
100	50	25	12.5	6.25	3.125	1.5625	0.781	0.39	0.195	0.098
0	50	75	87.5	93.75	96.875	98.4375	99.2185	99.6085	99.8035	99.9

5. If a sample contains 50g of Carbon¹⁴ and 50g of Nitrogen¹⁴, how many half-lives has it undergone?

- 6. If a sample contains 25g of Carbon¹⁴ and 75g of Nitrogen¹⁴, how many half-lives has it undergone?
- 7. If a sample contains 25g of Carbon¹⁴ and 175g of Nitrogen¹⁴, how many half-lives has it undergone?
- 8. How old is a bone in which the Carbon¹⁴ in it has undergone 3 half-lives?
- 9. What percent of Carbon¹⁴ is left after 5 half-lives?
- 10. What happens to the amount of Nitrogen¹⁴ as the Carbon¹⁴ decays?
- 11. If a 20g of Carbon¹⁴ has a half-life of 5,700 years, what would be the half-life of a 40g sample?