\qquad Period: \qquad

Radioactive Dating

Using regular (non-scientific) numbers, write the half-life of each of the following materials (from your Handy Dandy Earth Science Reference Tables):

1. Carbon ${ }^{14}$
2. Potassium ${ }^{40}$
3. Uranium ${ }^{238}$
4. Rubidium 87

How to calculate age of an item using radioactive isotopes:
a. Add the amount of parent material with the daughter product- this will equal the total amount of material that you started with.
b. Find the percentage of parent material compared to the total material (parent \div total $\times 100$).
c. Find the number of half-lives by looking up the percentage on the decay chart below.

0	1	2	3	4	5	6	7	8	9	10
100	50	25	12.5	6.25	3.125	1.5625	0.781	0.39	0.195	0.098
0	50	75	87.5	93.75	96.875	98.4375	99.2185	99.6085	99.8035	99.9

5. If a sample contains 50 g of Carbon ${ }^{14}$ and 50 g of Nitrogen ${ }^{14}$, how many half-lives has it undergone?
6. If a sample contains 25 g of Carbon ${ }^{14}$ and 75 g of Nitrogen ${ }^{14}$, how many half-lives has it undergone?
7. If a sample contains 25 g of Carbon ${ }^{14}$ and 175 g of Nitrogen ${ }^{14}$, how many half-lives has it undergone?
8. How old is a bone in which the Carbon ${ }^{14}$ in it has undergone 3 half-lives?
9. What percent of Carbon ${ }^{14}$ is left after 5 half-lives?
10. What happens to the amount of Nitrogen ${ }^{14}$ as the Carbon ${ }^{14}$ decays?
11. If a 20 g of Carbon ${ }^{14}$ has a half-life of 5,700 years, what would be the half-life of a 40 g sample?

