1) Determine if the following bonds are polar or nonpolar or ionic

С-С	Mg-O	0-0	0=0	Fe-Cl	B-F
Р-О	С–Н	Al-N	О-Н	Li–I	N-H

2) Determine which of the following will have the longest bond:

a)	C-Cl	C–F	b)	Н-О	H-S
c)	H-H	Br–Br	d)	Si=O	Si-O

e) Si=O C=O

3) What is the energy change when the following actions occur:

Forming 2 moles C=C bonds	Breaking 3.5 mole C–F bonds
Forming 0.75 moles O–H bonds	Breaking 0.75 mole N=O bonds
Forming 2 moles C=O bonds	Breaking 2 moles C=O bonds
Forming 4 moles C–O bonds	Breaking 0.50 moles S–Cl bonds
Forming 2.5 moles N–F bonds	Breaking 0.75 moles C–C bonds

TABLE 8.4 Average Bond Enthalpies (kJ/mol)							
Single I	Bonds						
С—Н	413	N — H	391	О—Н	463	F—F	155
C—C	348	N—N	163	0-0	146		
C—N	293	N-O	201	O—F	190	Cl—F	253
С—О	358	N—F	272	O-Cl	203	Cl—Cl	242
C—F	485	N—Cl	200	O—I	234		
C—Cl	328	N—Br	243			Br—F	237
C—Br	276			S—H	339	Br—Cl	218
C—I	240	Н—Н	436	S—F	327	Br—Br	193
C—S	259	H—F	567	S—Cl	253		
		H—Cl	431	S—Br	218	I—Cl	208
Si—H	323	H—Br	366	S—S	266	I—Br	175
Si—Si	226	H—I	299			I—I	151
Si—C	301						
Si—O	368						
Multipl	e Bonds						
C=C	614	N=N	418	02	495		
C≡C	839	N≡N	941	-			
C=N	615	N=O	607	S=O	523		
C≡N	891			s=s	418		
C=0	799						
C≡O	1072						

4) Draw the following molecules in 3D

AsH ₃	OF ₂	CH ₃ OH	C_2H_4	CH ₃ I
SO ₃	$\mathrm{SO_4}^{-2}$	SeF ₄	SiCl ₄	BF ₃
CS_2	C_6H_6	C ₆ H ₅ COOH	P_4	CH ₃ COCH ₃
H_2SO_4	SCl ₄			

5) Name the geometry around each center from the compounds in (4)

6) Determine the hybridization around each center in (4). Do you notice any trend in hybridization vs. geometry?

7) Determine if the compounds in (4) are polar or nonpolar.

8) Draw the MO diagrams for each of the following compounds, determine the bond order, and determine if it is paramagnetic or diamagnetic:

	F_2	Be_2	NO-	SO	SO^{+2}
--	-------	-----------------	-----	----	--------------------