Packet 7A

1. Perform the following unit conversions:

340 nm → m	3.65×10 ⁻⁹ m → nm	2500 nm → m
8.56×10- ⁷ m → nm	42.0 nm → m	

2. Calculate the frequency of the following waves of electromagnetic radiation.

200 nm	90.0 angstroms	95 cm	5.00×10-4 m	$35.5~\mathrm{nm}$

3. Calculate the wavelength of waves with the following frequencies.

4.66×10^{11} 1/s	$7.25 \times 10^8 \text{ Hz}$	$2.50 \times 10^5 \text{ s}^{-1}$
$5.22 \times 10^9 \text{ s}^{-1}$	$95~\mathrm{Hz}$	

4. Calculate the energy of the following photons.

λ = 465 nm	(f) = $6.33 \times 10^7 \text{ s}^{\cdot 1}$	$\lambda = 1.00 \text{ m}$
(f) = 5.55×10^{12} s ⁻¹	$\lambda = 25 \text{ nm}$	

- 5. For the photons described in Questions 1-3 classify the type of radiation.
- **6.** Describe the photoelectric effect in your own words.
- 7. Copper is bombarded with X-rays of a wavelength of 125 nm. The work function of copper is 4.7 eV (you will have to do a unit conversion), what is the kinetic energy of the electron that is emitted?
- 8. The kinetic energy of an electron ejected from a niobium surface has a KE = 1.50×10^{-19} J. The surface was bombarded with a photon with a λ = 236 nm, what is the work function of niobium in eV?
- **9.** An electron ejected from a copper surface (use the work function from question 7) with a KE = 2.00×10^{-19} J, what is the wavelength (λ) of the photon that was absorbed by the electron?