1) Draw Lewis dot structures and name the following compounds that are exceptions to the octet rule. Include ALL lone pair electrons and formal charges.

ICl ₅	XeF ₆	\mathbf{BrF}_3	$ m BH_3$	PCl ₅
SCl_6	H_3PO	$\mathbf{IF_3}$	$\mathbf{IF_5}$	\mathbf{SF}_4

2) Draw Lewis dot structures for the following ions, include formal charge

CH ₃ COO-	$\mathrm{CO_{3}^{-2}}$	CN^{-1}	N_3^{-1}	PO_4^{-3}
$\mathrm{CH_3NH_{3^+}}$	H_3O^+	<i>OH</i> -1	$\mathrm{BH_{4}^{-1}}$	NO_2^{-1}

3) Draw ALL the resonance structures for the following molecules and circle most likely structure. Make sure to include formal charges.

CO_3 2-	CN^{-1}	N_3^{-1}	ClO_3^{-1}

4) Name and draw the following organic molecules:

a) CH ₃ CH ₂ OH	b) CH ₃ CH ₂ OCH ₂ CH ₃	c) CH ₃ CH ₂ COOH	d) CH ₃ CH ₂ CHO	
e) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH		f) CH ₃ OCH ₂ CH ₃	g) CH ₃ CH ₂ NH ₂	
h) CH ₃ CH ₂ CHCHCOOH		i) CH ₃ COCH ₂ CH ₃	j) N(CH ₃) ₃	
k) CH ₃ CH ₂ CCCH ₂ CHO		l) CH ₃ CH ₂ CH ₂ CH(OH)CH ₃		
m) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH		n) CH ₃ CH(OH)CH ₂ CH ₂ CH ₃		
o) CH ₃ CH ₂ CH(OH)CH ₂ CH ₃		p) CH ₃ CH ₂ CH ₂ COOCH ₂ CH ₃		